DeepSkyFusion

The originality of the DeepSkyFusion research project lies in the design and implementation of new methods for multisource data fusion through Bayesian inference. To avoid information loss, both spectral and spatial super-resolution are required in some cases. Image data fusion involves automatic registration and spatial/spectral resampling, which is an ill-posed inverse problem that requires a good understanding of the image formation process.

Goals and objectives

Optimally combine all observations into a single image-like model

- Increase the spatial resolution if needed
- Increase the spectral resolution if needed
- Compute the uncertainties (inverse covariance matrix)

Enhance the image quality (optional)

Related issues:
- Automatic image registration
- Dynamic range expansion
- Astronomical image modeling
- Image formation process (”rendering”)
- Optimal spatial/spectral sampling
- Uncertainty simplification/formatting
- Compatibility with existing analysis tools
- Large data set (VO) processing...

Multisource data fusion through Bayesian inference

Reconstruct a single model from multiple observations
- Use a directed graphical model framework (Bayesian networks)
- Perform accurate camera calibration within this framework
- Efficiently account for missing data
- Develop efficient optimization procedures
- Perform model selection (best spatial/spectral resolution)

Image models: image formation and priors

Likelihood: Image formation model
- Use accurate resampling based on B-Splines and band-limited signal theory
- Take into account physical parameters (telescope, atmosphere, sensor, ...)
- Use real noise statistics: probabilistic part of the image formation process

State of the art

Multiple observations of the same object

- Different position, orientation, resolution, exposure time, SNR, spectral depth...

Problems: Information redundancy, missing data

Existing solutions:
- Simple image registration & coaddition/mosaicing
- Drizzling (Hubble Space Telescope)
- Super-resolution
- Multiframe restoration
- Weighted average of the analysis results

Benefits

- Provide a single, optimal image to replace all observations for a more accurate analysis
- Use all available physical information (instrument modeling)
- Use super-resolution capabilities (spatial, spectral)
- Error estimation (uncertainties)
- Possible model comparison, selection

Recursive inference & inverse covariance simplification

Recursive inference: add one image at a time
- Allow for model updates instead of batch processing
- Propagate uncertainties: use current posterior as a prior for the next inference step

Covariance selection: simplify the inverse covariance
- Get a first order Markov structure (no long-range interactions)
- Minimize a distance between multivariate normal distributions
- This way the recursive inference is greatly simplified

Image resampling model

Output pixel size = input pixel size / resampling factor

The proposed graphical model

Prior model
- camera pose
- camera resolution
- PSF parameters
- sensor sampling grid
- n observations

Marginalization
- camera pose parameters
- sensor parameters
- PSF
- n observations

Observations
- spatial kernel
- noise
- sensor parameters
- n observations

Recursive model
- inverse problem
- graphical model
- n observations

Marginalization
- prior model parameters
- inverse problem parameters
- spatial kernel
- noise
- sensor parameters
- n observations

Recursive inference
- add one image at a time
- allow for model updates instead of batch processing
- propagate uncertainties: use current posterior as a prior for the next inference step

Covariance selection: simplify the inverse covariance
- get a first order Markov structure (no long-range interactions)
- minimize a distance between multivariate normal distributions
- this way the recursive inference is greatly simplified

Theory

The hierarchy of tasks necessary to the project

Multisource Data Fusion and Super-Resolution from Astronomical Images

A. Jalobeanu, C. Collet, F. Salzenstein, M. Louys, J.A. Gutierrez

PASEO group, MIV team @ LSIT (UMR 7095 CNRS - Univ. of Strasbourg) • Illkirch, France

Email: lastname@lsit.u-strasbg.fr
Web: lsit-miv.u-strasbg.fr/paseo

Contributors:
- B. Vollmer (CDS, Strasbourg)
- A. Bijaoui (OCA, Nice)
- E. Slezak (OCA, Nice)

Funding:
- SpaceFusion project
- ANR (French Research Agency)
- “Projets Joutes Chercheurs” 2006

Image mosaicizing

Super-resolution from multiple undersampled images

Error minimization problem

Simplified graphical model and Bayesian inference through marginalization

Image formation model

1. Deterministic image formation process
 - Deformation (geometric mapping f, param. θ) and (additive noise α, w)
 - Convolution with the Point Spread Function (PSF) h
 - Sampling on a discrete pixel grid m

 For each sensor:
 \[y_j = (f(l_j) + h(l_j) + \alpha), \] where \(\lambda_j \) is function of \(f, h \)

2. Probabilistic image formation process
 - Prior: Gaussian noise statistics for deterministic and undetermined variance
 - Posterior: given observations

Prior: a prior pdf of astronomical images
- Prior models used for regularization purposes (image reconstruction - ill-posed inverse problem)
- Use simple Markov model in the fusion process (allow for subsequent denoising if needed)
- Take into account stars as point sources over a smooth background (Clean-like method)